496 research outputs found

    Response of House Foundations During the Loma Prieta Earthquake

    Get PDF
    Significant damage to house foundations has resulted from the Lorna Prieta earthquake. In some cases the cost to repair the foundation and to make the necessary seismic upgrades exceeded the market value of the house. This level of foundation damage was found at various distances from the epicenter and in different geologic settings. Presented in this paper are observations made on the foundation responses to various ground effects from the earthquake shaking. Also pointed out is the difference in performance of various affected foundation systems

    Bidimensional Tandem Mass Spectrometry for Selective Identification of Nitration Sites in Proteins.

    Get PDF
    Nitration of protein tyrosine residues is very often regarded as a molecular signal of peroxynitrite formation during development, oxidative stress, and aging. However, protein nitration might also have biological functions comparable to protein phosphorylation, mainly in redox signaling and in signal transduction. The major challenge in the proteomic analysis of nitroproteins is the need to discriminate modified proteins, usually occurring at substoichiometric levels from the large amount of nonmodified proteins. Moreover, precise localization of the nitration site is often required to fully describe the biological process. Existing methodologies essentially rely on immunochemical techniques either using 2D-PAGE fractionation in combination with western blot analyses or exploiting immunoaffinity procedures to selectively capture nitrated proteins. Here we report a totally new approach involving dansyl chloride labeling of the nitration sites that rely on the enormous potential of MSn analysis. The tryptic digest from the entire protein mixture is directly analyzed by MS on a linear ion trap mass spectrometer. Discrimination between nitro- and unmodified peptide is based on two selectivity criteria obtained by combining a precursor ion scan and an MS3 analysis. This new procedure was successfully applied to the identification of 3-nitrotyrosine residues in complex protein mixtures

    Bank Instability Problems Associated With the Riverside Construction

    Get PDF
    In this case study, the sliding of a riverbank during construction of a water intake facility in Tennessee was investigated and analyzed. The construction of the project involved the installation of 2-36 in. diameter intake pipes from the wet well to the river inlet which were 290 ft apart. An open cut excavation from the river inlet to the riverbank toe was used to connect the inlet to the tunnel-installedintake pipes on the land side. During the excavation, a 25 ft wide slide, which 4 months later widened by another 15 ft, developed to the crest of the road on the riverbank. Consequently, a concern developed for the safety of the roadway. The geometry of the slopes and the cuts, pre- and post-construction geotechnical subsurface investigation, construction history, and sliding conditions were examined for the causes of the riverbank instabilities. The fundamental cause of the slides was the undermining of the latent bedrock surface from subaqueous excavation into the riverbank

    Empirical Correlations of Longwall Subsidence Data for the Illinois Coal Basin

    Get PDF
    Subsidence, mining and site data has been collected over a number of longwall panels in the Illinois Basin. Using this data, empirical correlations are attempted to various subsidence parameters, including maximum vertical and horizontal displacement, subsidence slope and curvature and horizontal strain. Also, the corresponding locations of these various subsidence characteristics are correlated to the associated site conditions. An extensive list of definitions are provided for the various subsidence parameters utilized in the paper

    A rapid and selective mass spectrometric method for the identification of nitrated proteins.

    Get PDF
    The nitration of protein tyrosine residues represents an important posttranslational modification during development, oxidative stress, and biological aging. The major challenge in the proteomic analysis of nitroproteins is the need to discriminate modified proteins, usually occurring at substoichiometric levels, from the large amount of nonmodified proteins. Moreover, precise localization of the nitration site is often required to fully describe the biological process. Identification of the specific targets of protein oxidation was previously accomplished using immunoprecipitation techniques followed by immunochemical detection. Here, we report a totally new approach involving dansyl chloride labeling of the nitration sites which relies on the enormous potential of MSn analysis. The tryptic digest from the entire protein mixture is directly analyzed by MS on a linear ion trap mass spectrometer. Discrimination between nitro- and unmodified peptide is based on two selectivity criteria obtained by combining a precursor ion scan and a MS3 analysis. The novel labeling procedure was successfully applied to the identification of 3-nitrotyrosine residues in complex protein mixture

    A versatile and user-friendly approach for the analysis of proteins in ancient and historical objects

    Get PDF
    Identification and characterization of ancient proteins still require technical developments towards non-invasiveness, sensitivity, versatility and ease of use of the analyses. We report that the enzyme functionalized films, described in Cicatiello et al. (2018), can be used efficiently on the surface of different objects ranging from fixative-coated paper to canvas to the coating on an albumen photograph, as well as the much harder surfaces of ivory objects and the proteinaceous binders in the decoration of a wooden Egyptian coffin. The mixture of digested peptides that are efficiently captured on the functionalized surface are also amenable to LC-MS/MS analysis, which is necessary to confidently identify chemical modifications induced upon degradation, in order to characterize the conservation state of proteins. Moreover, in a two-step procedure, we have combined the trypsin functionalized film with a PNGaseF functionalized film, which adds a deglycosylation pretreatment allowing improved detection of glycosylated proteins. SIGNIFICANCE: User friendly trypsin functionalized films were implemented to expand their potential as versatile, modular tools that can be widely exploited in the world of diagnosis of cultural heritage objects, ancient proteins, and palaeoproteomics: a procedure that could be carried out by conservators or archaeologists first on-site and later analysed with standard MS techniques

    Influence of production process design on inclusion bodies protein: the case of an Antarctic flavohemoglobin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein over-production in <it>Escherichia coli </it>often results in formation of inclusion bodies (IBs). Some recent reports have shown that the aggregation into IBs does not necessarily mean that the target protein is inactivated and that IBs may contain a high proportion of correctly folded protein. This proportion is variable depending on the protein itself, the genetic background of the producing cells and the expression temperature. In this paper we have evaluated the influence of other production process parameters on the quality of an inclusion bodies protein.</p> <p>Results</p> <p>The present paper describes the recombinant production in <it>Escherichia coli </it>of the flavohemoglobin from the Antarctic bacterium <it>Pseudoalteromonas haloplanktis </it>TAC125. Flavohemoglobins are multidomain proteins requiring FAD and heme cofactors. The production was carried out in several different experimental setups differing in bioreactor geometry, oxygen supply and the presence of a nitrosating compound. In all production processes, the recombinant protein accumulates in IBs, from which it was solubilized in non-denaturing conditions. Comparing structural properties of the solubilized flavohemoglobins, i.e. deriving from the different process designs, our data demonstrated that the protein preparations differ significantly in the presence of cofactors (heme and FAD) and as far as their secondary and tertiary structure content is concerned.</p> <p>Conclusions</p> <p>Data reported in this paper demonstrate that other production process parameters, besides growth temperature, can influence the structure of a recombinant product that accumulates in IBs. To the best of our knowledge, this is the first reported example in which the structural properties of a protein solubilized from inclusion bodies have been correlated to the production process design.</p

    Recombinant protein expression system in cold loving microorganisms

    Get PDF
    Soluble and functional proteins are of high demand in modern biotechnology. Although many recombinant proteins have been successfully obtained from common prokaryotic and eukaryotic hosts, these systems result to be often unproductive due to the peculiar properties of the protein to be produced. Incorrect folding of the nascent polypeptide chains is one of the main problems occurring during heterologous protein production in bacteria. Since formation of inclusion bodies often impairs the recombinant production of valuable proteins, many experimental approaches have been explored to minimize this undesirable effect [1, 2]. Expression of "difficult" proteins has also been carried out by lowering the temperature at the physiological limit allowed for the growth of mesophilic host organisms (between 15 and 18°C for Escherichia coli). Lowering the temperature, in fact, has a pleiotropic effect on the folding process, destabilising the hydrophobic interactions needed for intermediates aggregation [3]. On the basis of the above considerations, a rational alternative to mesophilic organisms is the use of naturally cold-adapted bacteria as hosts for protein production at low temperature (even at around 0°C)

    Mesoporous silica nanoparticles as carriers of active agents for smart anticorrosive organic coatings: a critical review

    Get PDF
    Mesoporous silica nanoparticles with properly designed textural properties and tailored release of corrosion inhibitors are highly efficient smart carriers for advanced anticorrosive nanocomposite coatings

    Proteomic strategies for cultural heritage: From bones to paintings

    Get PDF
    In recent years, proteomics procedures have become increasingly popular for the characterization of proteinaceous materials in ancient samples of several cultural heritage objects. The knowledge of the materials used in a work of art is crucial, not only to give an insight in the historical context of objects and artists, but also to analyse degradation processes taking place in aged objects and to develop appropriate conservation and/or restoration treatments. However, protocols routinely applied for typical modern samples still need to be fully adapted to take into account the low amount of proteinaceous material, the heterogeneity and the unusual physical state of the samples, as well as the high levels of damage found in ancient samples. This paper deals with some examples of the adaptation of classical proteomic strategies in the analysis of ancient samples to meet the different aims in the cultural heritage field
    corecore